111. The expression [∂2 f(x,y)/∂x2 +∂2 f(x,y)/∂y2] is considered as _________ where f(x, y) is an input image.
A. Laplacian of f(x, y)
B. Gradient of f(x, y)
C. All of Mentioned
D. None of the mentioned
112. If the Laplacian in the frequency domain is:
A. Laplacian operation
B. Filtering operation
C. Shift operation
D. None of the mentioned
113. The Laplacian in frequency domain is simply implemented by using filter __________
A. H(u, v)= -(u2– v2)
B. H(u, v)= -(1)
C. H(u, v)= -(u2+ v2)
D. none of the mentioned
114. Assuming that the origin of F(u, v), Fourier transformed the function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y before taking the transform of the image. If F and f are of the same size, then what does the given operation is/are supposed to do?
A. Resize the transform
B. Rotate the transform
C. Shifts the center transform
D. All of Mentioned
115. Assuming that the origin of F(u, v), Fourier transformed the function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y before taking the transform of the image. If F and f are of the same size M*N, where do the point (u, v) =(0,0) shift?
A. (M -1, N -1)
B. (M/2, N/2)
C. (M+1, N+1)
D. (0, 0)
116. Assuming that the origin of F(u, v), Fourier transformed the function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y before taking the transform of the image. If F and f are of the same size M*N, then which of the following is an expression for H(u, v), the filter used for implementing Laplacian in the frequency domain?
A. H(u, v)= -(u2+ v2)
B. H(u, v)= -(u2– v2)
C. H(u, v)= -[(u – M/2)2+ (v – N/2)2].
D. H(u, v)= -[(u – M/2)2– (v – N/2)2].
117. Computing the Fourier transform of the Laplacian result in the spatial domain is equivalent to multiplying the F(u, v), Fourier transformed the function of f(x, y) an input image, and H(u, v), the filter used for implementing Laplacian in the frequency domain. This dual relationship is expressed as _________
A. Fourier transform pair notation
B. Laplacian
C. Gradient
D. None of the mentioned
118. Computing the Fourier transform of the Laplacian result in the spatial domain is equivalent to multiplying the F(u, v), Fourier transformed the function of f(x, y) an input image of size M*N, and H(u, v), the filter used for implementing Laplacian in the frequency domain. This dual relationship is expressed as Fourier transform pair notation given by__________
A. ∇2 f(x,y)↔[(u –M/2)2+ (v –N/2)2]F(u,v)
B. ∇2 f(x,y)↔-[(u+M/2)2– (v+N/2)2]F(u,v)
C. ∇2 f(x,y)↔-[(u –M/2)2+ (v –N/2)2]F(u,v)
D. ∇2 f(x,y)↔[(u+M/2)2– (v+N/2)2]F(u,v)
119. An enhanced image can be obtained as g(x,y)=f(x,y)-∇2 f(x,y), where Laplacian is being subtracted from f(x, y) the input image. What does this conclude?
A. That the center spike would be negative
B. That the immediate neighbors of the center spike would be positive.
C. All of Mentioned
D. None of the mentioned
120. An enhanced image can be obtained as g(x,y)=f(x,y)-∇2 f(x,y), where Laplacian is being subtracted from f(x, y) the input image of size M*Non which an operation f(x, y)(-1)x+yis applied. Unlike enhancing in spatial domain with one single mask, it is possible to perform the same in the frequency domain using one filter. Which of the following is/are the required filter(s)?
A. H(u, v)= -[1 + u2+ v2].
B. H(u, v)= -[(u – M/2)2+ (v– N/2)2].
C. H(u, v)= [1 + (u – M/2)2+ (v – N/2)2].
D. All of Mentioned
121. Why is scaling of Laplacian filtered images necessary?
A. Because it contains high positive values
B. Because it contains a high negative value
C. Because it contains both positive and negative values
D. None of the mentioned
122. Which of the following fact is true for the masks that include diagonal neighbors than the masks that don’t?
A. Mask that excludes diagonal neighbors has more sharpness than the masks that doesn’t
B. Mask that includes diagonal neighbors has more sharpness than the masks that doesn’t
C. Both masks have the same sharpness result
D. None of the mentioned