LTI System Analysis MCQ Quiz – Objective Question with Answer for LTI System Analysis

1. Which of the following justifies the linearity property of z-transform?[x(n)↔X(z)].

A. x(n)+y(n) ↔ X(z)Y(z)
B. x(n)+y(n) ↔ X(z)+Y(z)
C. x(n)y(n) ↔ X(z)+Y(z)
D. x(n)y(n) ↔ X(z)Y(z)

Answer: B

According to the linearity property of z-transform, if X(z) and Y(z) are the z-transforms of x(n) and y(n) respectively then, the z-transform of x(n)+y(n) is X(z)+Y(z).

 

2. What is the z-transform of the signal x(n)=[3(2n)-4(3n)]u(n)?

A. \(\frac{3}{1-2z^{-1}}-\frac{4}{1-3z^{-1}}\)

B. \(\frac{3}{1-2z^{-1}}-\frac{4}{1+3z^{-1}}\)

C. \(\frac{3}{1-2z}-\frac{4}{1-3z}\)

D. None of the mentioned

Answer: A

Let us divide the given x(n) into x1(n)=3(2n)u(n) and x2(n)= 4(3n)u(n)
and x(n)=x1(n)-x2(n)

From the definition of z-transform

X1(z)=\(\frac{3}{1-2z^{-1}}\) and X2(z)=\(\frac{4}{1-3z^{-1}}\)

So, from the linearity property of z-transform

X(z)=X1(z)-X2(z)

=> X(z)=\(\frac{3}{1-2z^{-1}}-\frac{4}{1-3z^{-1}}\).

 

3. What is the z-transform of the signal x(n)=sin(jω0n)u(n)?

A. \(\frac{z^{-1} sin\omega_0}{1+2z^{-1} cos\omega_0+z^{-2}}\)

B. \(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0-z^{-2}}\)

C. \(\frac{z^{-1} cos\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\)

D. \(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\)

Answer: D

By Euler’s identity, the given signal x(n) can be written as

x(n) = sin(jω0n)u(n)=\(\frac{1}{2j}[e^{jω_0n} u(n)-e^{-jω_0n} u(n)]\)

Thus X(z)=\(\frac{1}{2j}[\frac{1}{1-e^{jω_0} z^{-1}}-\frac{1}{1-e^{-jω_0} z^{-1}}]\)

On simplification, we obtain

=> \(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\).

 

4. According to the Time-shifting property of the z-transform, if X(z) is the z-transform of x(n) then what is the z-transform of x(n-k)?

A. zkX(z)
B. z-kX(z)
C. X(z-k)
D. X(z+k)

Answer: B

According to the definition of Z-transform

X(z)=\(\sum_{n=-\infty}^{\infty} x(n) z^{-n}\)
=>Z{x(n-k)}=\(X^1(z)=\sum_{n=-\infty}^{\infty} x(n-k) z^{-n}\)

Let n-k=l

=> X1(z)=\(\sum_{l=-\infty}^{\infty} x(l) z^{-l-k}=z^{-k}.\sum_{l=-\infty}^{\infty} x(l) z^{-l}= z^{-k}X(z)\)

 

5. What is the z-transform of the signal defined as x(n)=u(n)-u(n-N)?

A. \(\frac{1+z^N}{1+z^{-1}}\)

B. \(\frac{1-z^N}{1+z^{-1}}\)

C. \(\frac{1+z^{-N}}{1+z^{-1}}\)

D. \(\frac{1-z^{-N}}{1-z^{-1}}\)

Answer: D

We know that \(Z{u(n)}=\frac{1}{1-z^{-1}}\)

And by the time shifting property, we have Z{x(n-k)}=z-k.Z{x(n)}

=>Z{u(n-N)}=\(z^{-N}.\frac{1}{1-z^{-1}}\)

=>Z{u(n)-u(n-N)}=\(\frac{1-z^{-N}}{1-z^{-1}}\).

 

6. If X(z) is the z-transform of the signal x(n) then what is the z-transform of anx(n)?

A. X(az)
B. X(az-1)
C. X(a-1z)
D. None of the mentioned

Answer: C

We know that from the definition of z-transform

Z{anx(n)}=\(\sum_{n=-\infty}^{\infty}a^n x(n) z^{-n}=\sum_{n=-\infty}^{\infty}x(n)(a^{-1}z)^{-n}=X(a^{-1}z)\).

 

7. If the ROC of X(z) is r1<|z|<r2, then what is the ROC of X(a-1z)?

A. |a|r1<|z|<|a|r2
B. |a|r1>|z|>|a|r2
C. |a|r1<|z|>|a|r2
D. |a|r1>|z|<|a|r2

Answer: A

Given ROC of X(z) is r1<|z|<r2
Then ROC of X(a-1z) will be given by r1<|a-1z |<r2=|a|r1<|z|<|a|r2

 

8. What is the z-transform of the signal x(n)=an(sinω0n)u(n)?

A.\(\frac{az^{-1} sin\omega_0}{1+2 az^{-1} cos\omega_0+a^2 z^{-2}}\)

B.\(\frac{az^{-1} sin\omega_0}{1-2 az^{-1} cos\omega_0- a^2 z^{-2}}\)

C.\(\frac{(az)^{-1} cos\omega_0}{1-2 az^{-1} cos\omega_0+a^2 z^{-2}}\)

D.\(\frac{az^{-1} sin\omega_0}{1-2 az^{-1} cos\omega_0+a^2 z^{-2}}\)

Answer: D

we know that by the linearity property of z-transform of sin(ω0n)u(n) is

X(z)=\(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\)

Now by the scaling in the z-domain property, we have z-transform of an (sin(ω0n))u(n) as

X(az)=\(\frac{az^{-1} sin\omega_0}{1-2az^{-1} cosω_0+a^2 z^{-2}}\)

 

9. If X(z) is the z-transform of the signal x(n), then what is the z-transform of the signal x(-n)?

A. X(-z)
B. X(z-1)
C. X-1(z)
D. None of the mentioned

Answer: B

From the definition of z-transform, we have

Z{x(-n)}=\(\sum_{n=-\infty}^{\infty} x(-n) z^{-n}=\sum_{n=-\infty}^{\infty} x(-n) (z^{-1})^{-(-n)}=X(z^{-1})\)

 

10. X(z) is the z-transform of the signal x(n), then what is the z-transform of the signal nx(n)?

A. \(-z\frac{dX(z)}{dz}\)

B. \(z\frac{dX(z)}{dz}\)

C. \(-z^{-1}\frac{dX(z)}{dz}\)

D. \(z^{-1}\frac{dX(z)}{dz}\)

Answer: A

From the definition of z-transform, we have

X(z)=\(\sum_{n=-\infty}^{\infty} x(n) z^{-n}\)

On differentiating both sides, we have

\(\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty} (-n) x(n) z^{-n-1}=-z^{-1} \sum_{n=-\infty}^{\infty}nx(n) z^{-n}=-z^{-1}Z\{nx(n)\}\)

Therefore, we get \(-z\frac{dX(z)}{dz}\) = Z{nx(n)}.

Scroll to Top